Kurzüberblick zur Geschichte der Rechentechnik

Wer	Was / Innovatives Prinzip	Schaltungsart	Geschwindigkeit	Wann
	Jacquardwebstuhl			
	(Erste Trennung von Hardware, Webstuhl, und			Ca.
J.M. Jacquard ¹	Software, Lochkarten, bei einer Maschine)	Mechanik		1805
Charles Babbage	Analytische Maschine			
	(Erste Trennung von Hardware und Software			
	bei einer Rechenmaschine)			
Ada Lovelace	Erster Mensch, der Software mit Hilfe von	Mechanische Schalter		Ca.
	Lochkarten entworfen hat	Feinmechanik		1846
	Z3	Elektromechanische Schalter		Ca.
Konrad Zuse	(Erster Rechner mit Binärsystem)	(Relais)	eine Multiplikation in ca. 4-5 Sekunden ²	1941
John von	ENIAC ³		eine Multiplikation in ca. 2,8 Millisekunden ⁴	Ca.
Neumann		Elektronenröhren	(2,8 x 10 ⁻³ sek)	1946
			eine Multiplikation in ca. 130 Mikrosekunden	
			(130 x 10 ⁻⁶ sek). Später bis zu bis zu 2 Millionen Multiplikati-	Ca.
John R. Pierce⁵	6	Transistoren	onen pro Sekunde ⁷	1960
		IC (Integrated Circuit) – Inte-	eine Multiplikation benötigt bei einer 6502 CPU je nach Im-	
	z.B. Rechner der	grierte Schaltkreise,	plementierung bis 300 Taktzyklen (Taktfrequenz 1 Mhz), also	Ca.
Jack Kilby et al. ⁸	Apollo 11 Mondlandefähre ⁹	Mikrochip, Mikroprozessor ¹⁰	300 x 10 ⁻⁶ sek.	1966
	sogenannte 5. Computergeneration	Parallele Strukturen,	Gordon Moore formulierte schon 1965 ein Gesetz, das be-	ab ca.
		MultiCore-Systeme	sagt, dass sich die Komplexität integrierter Schaltkreise re-	1985
			gelmäßig verdoppelt. Mittlerweile heißt es, dass sich die An-	
			zahl der Transistoren in einem IC alle 2 Jahre verdoppelt.	

¹Auf ihn geht die Idee, "Programme" – oder "Verarbeitungsvorschriften" – durch Lochkarten zu repräsentieren zurück, der damals einen vollständig automatischen Webstuhl konstruierte, welcher genau die Muster webte, die man ihm per Lochkarten vorgegeben hat.

² vgl. Drüing: Geschichte des Computers von den Anfängen bis zur Gegenwart. Proseminar. TU Tübingen. 2001

³ Der ENIAC wurde entwickelt von J. Presper Eckert und John W. Mauchly und konnte addieren, subtrahieren, multiplizieren, dividieren und Quadratwurzeln ziehen. Das Grundkonzept und Erweiterungen basiert auf Arbeiten von John v. Neumann. Der ENIAC bestand aus ca. 18.000 Elektronenröhren.

⁴ vgl. Drüing: Geschichte des Computers von den Anfängen bis zur Gegenwart. Proseminar. TU Tübingen. 2001

⁵ Dieser prägte den Begriff Transistor ca. 1948. Das Prinzip selbst wurde schon 1928 von Lilienfeld erfunden. Erst in den 1960er Jahren erlangten die Transistoren die Marktreife und den Einsatz in der Rechentechnik

 $^{^6 \} Beispiele \ unter \ http://www.technikum 29. de/de/rechnertechnik/fruehe-computer$

⁷ Steinbuch, Weber: Taschenbuch der Informatik: Band I: Grundlagen der technischen Informatik. 2013. S.21, 27

⁸ gilt zusammen mit Robert Noyce als Erfinder der integrierten Schaltung – wofür er den Nobelpreis für Physik erhielt – und wird als "Vater des Mikrochips" bezeichnet.

⁹ vgl. http://de.wikipedia.org/wiki/Apollo_Guidance_Computer

 $^{^{\}rm 10}$ Mikroprozessoren bestehen aus vielen Millionen bis Milliarden Transistoren

Kurzüberblick zur Geschichte der Rechentechnik

Mögliche Aufgabenstellung

Charakterisieren Sie die Computergenerationen 0 bis 5 durch ein Schlagwort für das innovative Funktionsprinzip, geben Sie die ungefähre Zeit der ersten Einführung an und nennen Sie außerdem ein typisches Rechnermodell für jede Computergeneration.

Lösung

Generation	Innovatives Prinzip	Entstehungsjahr	Beispiel
0.	Elektromechanische Komponenten	1941	Z3, Mark1
1.	Elektronenröhren	1946	ENIAC, PERM
2.	Transistoren	1952	IBM 701
3.	ICs	1960	PDP8
4.	VLSI	1975	PCs, Großrechner
5.	Parallele Strukturen, KI	1985	Connection Machine